Woodward-Clyde Consultants

June 16, 1986 90158B-6009

RECEIVED

U.S. Environmental Protection Agency Region VI InterFirst Two Building 1201 Elm Street Dallas, Texas 75270 NUN 20 1986

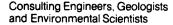
TOXICS SECTION

Attention: Mr. Darl Mount

Subject: Transwestern Pipeline Company, Corona N.M. Facility

Preliminary Results of Offsite PCB Sampling

Dear Mr. Mount:


Results of on-site sampling and analysis of soil at the Transwestern Pipeline Company facility near Corona, New Mexico, as presented to you on March 6, 1986, indicated the potential for surficial PCB soil contamination of property to the SE of the facility.

A soil sampling program to evaluate the existence/extent of such contamination was prepared and implemented during the period of April 15 to 19, 1986.

The primary area sampled consisted of a 500 foot wide zone extending outward from the south and east boundaries of the site. Soil within this zone was sampled on a grid pattern as shown in the appended figure. Additional samples were collected from the intermittant drainage leading southwest from the corner of the site. At each location, soil was collected from a 10 cm square to a depth of approximately 2 cm, thoroughly mixed and placed in a laboratory prepared glass jar. 70 samples were collected.

To minimize analytical costs, the samples are being analyzed sequentially, starting with those closest to the property line and those along the bottom of the intermittant drainage. Analysis is by gas chromatography-electron capture detector according to EPA Contract Lab Procedures. Results of the 45 samples analyzed to date are presented in the appended table. This table also indicates that the status of samples for which analysis has not yet been completed. Based on this data the approximate 5 and 50 mg/kg zones have been plotted on the sample location figure. An additional set of samples is currently being analyzed to allow better definition of the containment zone.

Woodward-Clyde Consultants

Mr. Darl Mount June 16, 1986 Page Two

Based on analysis completed to date, it does not appear that there is extensive offsite contamination. Additional analytical information will be provided when it is available. At that time, and when an action level is determined, treatment of this additional material will be incorporated in our plans for site cleanup.

Much of the offsite contamination is believed to be related to rainfall erosion and offsite transport of contaminated particles. We have constructed a number of drainage control structures along the SE site boundary to minimize erosion and offsite transport. Observation of the performance of these structures during recent rainstorms suggests that they are effective in controlling offsite sediment flow.

Should you have any questions, please contact me.

Sincerely,

R. W. Castle

Woodward-Clyde Consultants

Ale, Caste

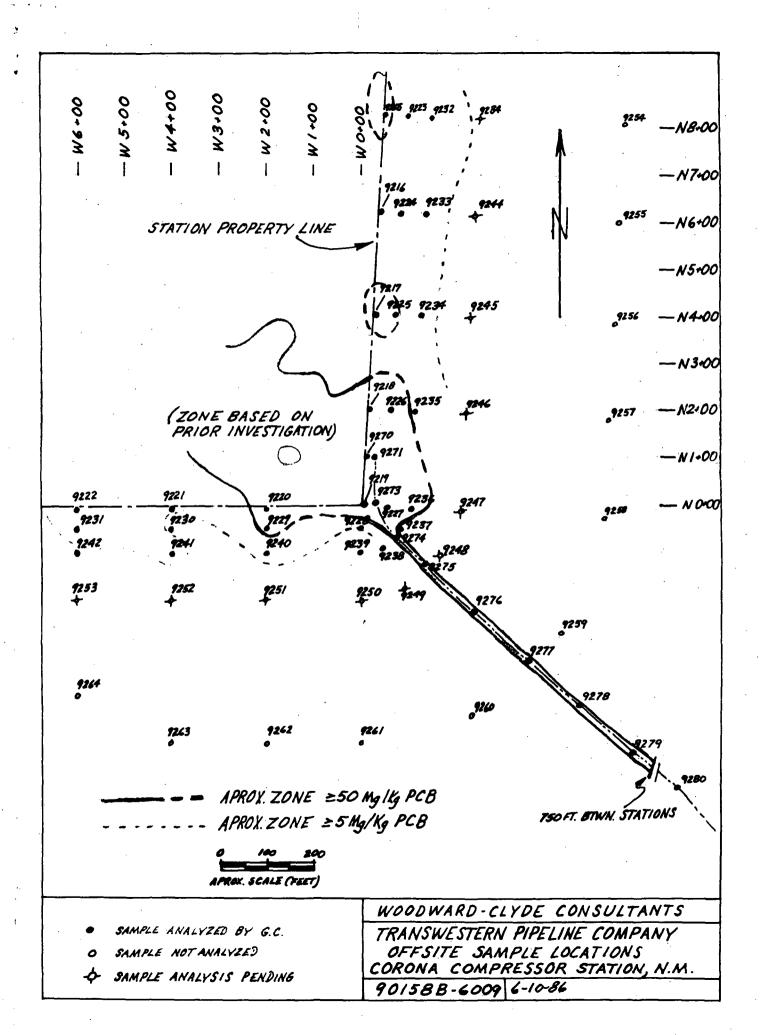

RWC:bv 2971c*

TABLE 1. ANALYTICAL RESULTS

SAMPLE NO.	PCB CONC (mg/kg)	COMMENTS
9215	200	
9216	0.62	
9217	89.6	
9218	650	
9219	70.0	
9220	290	
9221	7.61	
9222	34.0	
9223	9.38	
9224	11.0	
9225	66.8	•
9226	260	
9227	87.6	
9228	5.01	
9229 9230	190	
9230 9231	4.34 6.65	
9232	26.5	
9233	13.6	
9234	6.61	
9235	36.1	
9236	190	
9237	14.9	
9238	0.86	
9239	2.30	
9240	15.0	
9241	5.10	
9242	4.01	
9243	analysis in progre	ess
9244	analysis in progre	
9245	analysis in progre	
9246	analysis in progre	
9247	analysis in progre	SS
9248	analysis in progre	SS
9249	analysis in progre	53
9250	analysis in progre	SS

Table 1 Continued

9251	analysis in progress	
9252 9253	analysis in progress analysis in progress	•
9254	N.A.	
9255	N.A.	•
9256	. N.A.	
9257	N.A.	
9258	N.A.	
9259	analysis in progress	
9260	analysis in progress	
9261	N.A.	
9262	N.A.	-
9263	N.A.	
9264	N.A.	
9265	600	duplicate 9218
9266	48.9	duplicate 9227
9267	49.0	duplicate 9237
9268	analysis in progress	duplicate 9248
9269	analysis in progress	duplicate 9259
9270	1100	
9271	600	
9272	9100	
9273	910	
9274	420	
9275	570	
9276	51.8	
9277	115	
9278	96.5	
9279	216	
9280	2.65	
9281	670	duplicate 9271
9282	230	•
9283	260	
9284	6.23	
9285	45.0	

